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Introduction Method Experiments
» Deep architectures for video analysis largely based off of those for * Linear dynamical model Xy = AX;_1 + noise Latent state VGG-16 activations Our corrections |
static images (e.g. two-stream networks) inspired by Kalman Filters::  y; = Cx; + noise Observation . ".:, .| Ourmodel de-correlates inputs
»  The human vision system relies on continuously predicting the » Improve estimate using: Xy = X¢_1 + g(y; — Yt)P , {*’::' | ateach layer. While conv4-3
future and then correcting for the unexpected E— 'Cttlon : O activations (left) of consecutive
. Classic theory for linear dynamical systems provides a principled oTresHen ! o TR0 frames are highly correlated,
assIC h?OY 0 . yh' neal sy P P P g conv4-3 corrections (right)
approach tor incorporating this intuition * Predictive-corrective block applies this motivation to deep networks: . are not.
Frames FC8
lpredidim Single-frame 34.7 25.4
‘ D . 1 Two-stream 36.2" 27.6" 8.9
t=1 - CNN (g9) — +
e = e — e ! . LSTM (RGB) 39.3 28.1 7.7
serve t= redict for t= Observe t=1 orrect Yt correction X\t Predictive-Corrective 38.9 29.7 8.9

* reported from [Yeung 2017], using a single optical flow frame

° Observations can |OW€F |ayer activations (e g COnV3) Whlle Iatent Prior work achieves 29.6% on MultiTHUMOS [Yeung 2017] and 12.5% on Charades [Sigurdsson 2017]

Related Methods states can be higher layer activations (e.g. Tc7) Our update mechanism correctly recognizes the start of actions after

. Two-Stream [Simonyan 2014] incorporates motion cues with optical « Can efficiently be applied hierarchically initialization, and even corrects errors from initialization (last row).

flow. Our method models motion efficiently through “corrections” i1 211 Al — beate Lpcate
« Our model is a recurrent network that ameliorates the issue of - 0. B . m
correlated data, and maintains a spatial memory
« Clockwork RNN [Koutnik 2014] maintains memory states that ot ‘@ ©
evolve at fixed rates; our model dynamically updates memory
» ResNets [He 2015] learn efficiently by focusing on “residuals” at - H o
each layer. Our model focuses on “residuals” at each time step
Properties no thrw discus thro discus thro discus throw discus
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